Mostrar el registro sencillo del ítem

dc.date.available
2023-01-18T16:17:16Z  
dc.identifier.citation
Rodriguez Piceda, Constanza; Scheck Wenderoth, Magdalena; Gómez Dacal, María Laura; Bott, Judith; Prezzi, Claudia Beatriz; Strecker, Manfred; (2023): Lithospheric-scale 3D model of the Southern Central Andes. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/184921  
dc.identifier.uri
http://hdl.handle.net/11336/184921  
dc.description.abstract
The Central Andean orogeny is caused by the subduction of the Nazca oceanic plate beneath the South-American continental plate. In Particular, the Southern Central Andes (SCA, 27°-40°S) are characterized by a strong N-S and E-W variation in the crustal deformation style and intensity. Despite being the surface geology relatively well known, the information on the deep structure of the upper plate in terms of its thickness and density configurations is still scarcely constrained. Previous seismic studies have focused on the crustal structure of the northern part of the SCA (~27°-33°S) based upon 2D cross-sections, while 3D crustal models centred on the South-American or the Nazca Plate have been published with lower resolution. To gain insight into the present-day state of the lithosphere in the area, we derived a 3D model that is consistent with both the available geological and seismic data and with the observed gravity field. The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen, the forearc and the forelands  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.title
Lithospheric-scale 3D model of the Southern Central Andes  
dc.type
dataset  
dc.date.updated
2023-01-18T15:26:29Z  
dc.description.fil
Fil: Rodriguez Piceda, Constanza. German Research Centre for Geosciences; Alemania  
dc.description.fil
Fil: Scheck Wenderoth, Magdalena. German Research Centre for Geosciences; Alemania  
dc.description.fil
Fil: Gómez Dacal, María Laura. German Research Centre for Geosciences; Alemania  
dc.description.fil
Fil: Bott, Judith. German Research Centre for Geosciences; Alemania  
dc.description.fil
Fil: Prezzi, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina  
dc.description.fil
Fil: Strecker, Manfred. Universitat Potsdam; Alemania  
dc.datacite.PublicationYear
2023  
dc.datacite.Creator
Rodriguez Piceda, Constanza  
dc.datacite.Creator
Scheck Wenderoth, Magdalena  
dc.datacite.Creator
Gómez Dacal, María Laura  
dc.datacite.Creator
Bott, Judith  
dc.datacite.Creator
Prezzi, Claudia Beatriz  
dc.datacite.Creator
Strecker, Manfred  
dc.datacite.affiliation
German Research Centre for Geosciences  
dc.datacite.affiliation
German Research Centre for Geosciences  
dc.datacite.affiliation
German Research Centre for Geosciences  
dc.datacite.affiliation
German Research Centre for Geosciences  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires  
dc.datacite.affiliation
Universitat Potsdam  
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.subject
Geoquímica y Geofísica  
dc.datacite.subject
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS  
dc.datacite.date
01/03/2020-01/12/2020  
dc.datacite.DateType
Creado  
dc.datacite.language
eng  
dc.datacite.AlternateIdentifierType
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5880/GFZ.4.5.2020.001  
dc.datacite.version
1.0  
dc.datacite.description
Different data sets were integrated to derive the lithospheric features: - We used the global relief model of ETOPO1 (Amante and Eakins 2009) for the topography and bathymetry. - The sub-surface structures were defined by integrating seismically constrained models, including the South-American crustal thickness of Assumpção et al. (2013; model A; 0.5 degree resolution), the sediment thickness of CRUST1 (Laske et al. 2013) and the slab geometry of SLAB2 (Hayes et al. 2018). - Additionally, we included seismic reflection and refraction profiles performed on the Chile margin (Araneda et al. 2003; Contreras-Reyes et al. 2008, 2014, 2015; Flueh et al. 1998; Krawzyk et al. 2006; Moscoso et al. 2011; Sick et al. 2006; Von Huene et al. 1997). - Besides, we used sediment thickness maps from the intracontinental basin database ICONS (6 arc minute resolution, Heine 2007) and two oceanic sediment compilations: one along the southern trench axis (Völker et al. 2013) and another of global-scale (GlobSed; Straume et al. 2019). To build the interfaces between the main lithospheric features, we compiled and interpolated these datasets on a regular grid with a surface resolution of 25 km. For that purpose, the convergent algorithm of the software Petrel was used. We assigned constant densities within each layer, except for the lithospheric mantle. In this case, we implemented a heterogeneous distribution by converting s-wave velocities from the SL2013sv seismic tomography (Schaeffer and Lebedev 2013) to densities. The python tool VelocityConversion was used for the conversion (Meeßen 2017). To further constrain the crustal structure of the upper plate, a gravity forward modelling was carried out using IGMAS+ (Schmidt et al. 2010). The gravity anomaly from the model (calculated gravity) was compared to the free-air anomaly from the global gravity model EIGEN-6C4 (observed gravity; Förste et al 2014; Ince et al. 2019). Subsequently, the crystalline crust of the upper plate was split vertically into two layers of different densities. We inverted the residual between calculated and observed gravity to compute the depth to the interface between the two crustal layers. For the inverse modelling of the gravity residual, the Python package Fatiando a Terra was used (Uieda et al. 2013) For each layer, the depth to the top surface, thickness and density can be found as separate files. All files contain identical columns: - Northing as "X Coord (UTM zone 19S)"; - Easting as "Y Coord (UTM zone 19S)"; - depth to the top surface as "Top (m.a.s.l)" and - thickness of each layer as "Thickness (m)". The header ‘Density’ indicates the bulk density of each unit in kg/m3. For the oceanic and continental mantle units, a separate file is provided with a regular grid of the density distribution with a lateral resolution of 8 km x 9 km and a vertical resolution of 5 km. The containing columns are: Northing as "X Coord (UTM zone 19S)"; Easting as "Y Coord (UTM zone 19S)"; depth as "Depth (m.a.s.l)" and density as "Density (kg/m3)".  
dc.datacite.DescriptionType
Métodos  
dc.datacite.FundingReference
ITRG 373/34-1  
dc.datacite.FundingReference
GII Strategy  
dc.datacite.FunderName
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/142322  
dc.subject.keyword
3D DENSITY MODEL  
dc.subject.keyword
LITHOSPHERE  
dc.subject.keyword
SOUTHERN CENTRAL ANDES  
dc.datacite.resourceTypeGeneral
dataset  
dc.conicet.datoinvestigacionid
3019  
dc.datacite.awardTitle
Strategy  
dc.datacite.awardTitle
Strategy  
dc.datacite.geolocation
Southern Central Andes: -28.87, -64.40; -28.87, -72.45; -38.85, -72.45; -38.85, -64.40;  
dc.datacite.formatedDate
2020