Repositorio Institucional
Repositorio Institucional
CONICET Digital
Datos de
Investigación
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
    • TODO
  • Ayuda
    • Qué son y qué no son los Datos de Investigación
    • Cómo obtener un DOI/Handle
    • Cómo reutilizar y citar los Datos de Investigación
    • Preguntas frecuentes | FAQs
    • Contacto
  • Novedades
    • Noticias
    • Boletines
  • Acerca de
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • METADATOS
  • CONDICIONES DE USO
  • ARCHIVOS
  • ITEMS RELACIONADOS
  • ESTADISTICAS
 
 
Datos de investigación

Manually Labeled Data Set for the Ongoing Event Detection Task (2,200 news extracts from the NYT Annotated Corpus with manually labeled ongoing event triggers)

Autores: Maisonnave, MarianoIcon ; Delbianco, Fernando AndrésIcon ; Tohmé, Fernando AbelIcon ; Maguitman, Ana GabrielaIcon
Colaboradores: Evangelos, Milios
Publicador: Consejo Nacional de Investigaciones Científicas y Técnicas
Fecha de depósito: 19/04/2023
Fecha de creación: 01/03/2019-01/07/2019
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The present is a manually labeled data set for the task of Event Detection (ED). The task of ED consists of identifying event triggers, the word that most clearly indicates the occurrence of an event. The present data set consists of 2,200 news extracts from The New York Times (NYT) Annotated Corpus, separated into training (2,000) and testing (200) sets. Each news extract contains the plain text with the labels (event mentions), along with two metadata (publication date and an identifier). Labels description: We consider as event any ongoing real-world event or situation reported in the news articles. It is important to distinguish those events and situations that are in progress (or are reported as fresh events) at the moment the news is delivered from past events that are simply brought back, future events, hypothetical events, or events that will not take place. In our data set we only labeled as event the first type of event. Based on this criterion, some words that are typically considered as events are labeled as non-event triggers if they do not refer to ongoing events at the time the analyzed news is released. Take for instance the following news extract: "devaluation is not a realistic option to the current account deficit since it would only contribute to weakening the credibility of economic policies as it did during the last crisis." The only word that is labeled as event trigger in this example is "deficit" because it is the only ongoing event refereed in the news. Note that the words "devaluation", "weakening" and "crisis" could be labeled as event triggers in other news extracts, where the context of use of these words is different, but not in the given example. Further information: For a more detailed description of the data set and the data collection process please visit: https://cs.uns.edu.ar/~mmaisonnave/resources/ED_data. Data format: The dataset is split in two folders: training and testing. The first folder contains 2,000 XML files. The second folder contains 200 XML files. Each XML file has the following format. YYYYMMDDTHHMMSS ... ... ... The first three tags (pubdate, file-id and sent-idx) contain metadata information. The first one is the publication date of the news article that contained that text extract. The next two tags represent a unique identifier for the text extract. The file-id uniquely identifies a news article, that can hold several text extracts. The second one is the index that identifies that text extract inside the full article. The last tag (sentence) defines the beginning and end of the text extract. Inside that text are the tags. Each of these tags surrounds one word that was manually labeled as an event trigger.

Otro

Labeled data.
Palabras clave: ONGOING EVENT DETECTION, INFORMATION EXTRACTION, DIGITAL MEDIA ANALYSIS
Previsualización destacada
Identificador del recurso
URI: http://hdl.handle.net/11336/194509
Colecciones
Datos de Investigación(CCT - BAHIA BLANCA)
Datos de Investigación de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Datos de Investigación(INMABB)
Datos de Investigación de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Maisonnave, Mariano; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; (2023): Manually Labeled Data Set for the Ongoing Event Detection Task (2,200 news extracts from the NYT Annotated Corpus with manually labeled ongoing event triggers). Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/194509
Condiciones de uso
Las buenas prácticas científicas esperan que se otorgue el crédito adecuado mediante una citación. Utilice un formato de citación y aplique estas normas de reutilización.
info:eu-repo/semantics/openAccess
Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Compartir
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño
 
all_files_compressed_tar.gz
  Más
370.6Kb
  Descarga
 
 
Descargar todo
  Descargar solo metadatos (JSON)   Descargar solo metadatos (XML)
 
Preparando la descarga
 

Ver el registro completo

Publicaciones relacionadas

  • Causal graph extraction from news: a comparative study of time-series causality learning techniques
  • Detecting Ongoing Events Using Contextual Word and Sentence Embeddings

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Explorar

  • Autores
  • Disciplinas
  • Comunidades
  • Todo

Ayuda

  • Qué son y qué no son los Datos de Investigación
  • Cómo obtener un DOI/Handle
  • Cómo reutilizar y citar los Datos de Investigación
  • Preguntas frecuentes | FAQs
  • Contacto

Novedades

  • Noticias
  • Boletines

Acerca de

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES