Mostrar el registro sencillo del ítem

dc.date.available
2024-05-08T10:00:33Z  
dc.identifier.citation
Garrido, Carlos Hernán; Domizio, Martin Norberto; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel; (2024): Code for symbolic mathematical analysis, simulations and processing of experimental results related to Inerter-based Building Mass Damper. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/234817  
dc.identifier.uri
http://hdl.handle.net/11336/234817  
dc.description.abstract
The tuned mass damper (TMD) is a classical device interesting for reducing deformations between DOFs without physically connecting them. However, it has a practical limit due to the increase in mass required for improving its performance. A building mass damper (BMD) uses mode coupling to make the upper substructure of a chain-like structure behave as a TMD for the lower substructure, which avoids adding mass to the structure. Unfortunately, near-uniform chain-like structures require isolation of the upper substructure for tuning the BMD, making it impractical for retrofitting existing structures since it is an inseries intervention. This paper proposes and evaluates using an inerter, instead of isolating the upper substructure, to control vibrations through mode coupling in a chain-like structure. From an analytical and numerical study, it was found a significant reduction of lower substructure deformations by implementing solely an inerter and a damper in the upper substructure. The inerter-based approach showed similar performance to the classical BMD with the advantage of being an in-parallel intervention. Therefore, this approach constitutes a practical retrofit to improve the dynamic behavior of existing structures with excessive deformations in a lower substructure whose functionality or esthetics would be compromised if control devices were installed in it. The Building Mass Damper is a design concept for vibration control of structures where the upper substructure effectively behaves as a Tuned Mass Damper (TMD) for the lower one. Unfortunately, its tuning usually requires softening or partial isolation of the upper substructure; limiting its applicability for retrofitting. The recently proposed Inerter-based Building Mass Damper (IBMD) is an in-parallel intervention on the upper substructure with an inerter and a damper. Thus, the inerter allows correct Tuning, the upper substructure provides the Mass, and the damper adds the Damping. Therefore, a very large mass-ratio TMD is obtained with marginal additional weight and minimal practical impact. In the present work, experimental tests supported by numerical simulations on a small two-story structure model quantitatively confirm the effectiveness of the IBMD. Besides, an innovative compliant mechanism design is introduced for the implementation of the translation-rotational converter that drives the inerter; which has minimal backlash and friction, still allowing large strokes. The experiments involved a frictional damper, which performed comparable to a linear viscous damper considered in the simulations.  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.title
Code for symbolic mathematical analysis, simulations and processing of experimental results related to Inerter-based Building Mass Damper  
dc.type
dataset  
dc.date.updated
2024-05-07T14:51:36Z  
dc.description.fil
Fil: Garrido, Carlos Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;  
dc.description.fil
Fil: Domizio, Martin Norberto. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Curadelli, Raul Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;  
dc.description.fil
Fil: Ambrosini, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;  
dc.rights.embargoDate
2024-05-31  
dc.datacite.PublicationYear
2024  
dc.datacite.Creator
Garrido, Carlos Hernán  
dc.datacite.Creator
Domizio, Martin Norberto  
dc.datacite.Creator
Curadelli, Raul Oscar  
dc.datacite.Creator
Ambrosini, Ricardo Daniel  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo  
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.subject
Mecánica Aplicada  
dc.datacite.subject
Ingeniería Mecánica  
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS  
dc.datacite.subject
Sistemas de Automatización y Control  
dc.datacite.subject
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS  
dc.datacite.ContributorType
RelatedPerson  
dc.datacite.ContributorType
RelatedPerson  
dc.datacite.ContributorName
Moran, Jose Roberto  
dc.datacite.ContributorName
Houri, Eduardo Gabriel  
dc.datacite.date
01/02/2022-31/12/2023  
dc.datacite.DateType
Creado  
dc.datacite.language
eng  
dc.datacite.version
1.0  
dc.datacite.description
Python code  
dc.datacite.DescriptionType
Métodos  
dc.datacite.FunderName
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.FunderName
Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica  
dc.datacite.FunderName
Universidad Nacional de Cuyo  
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/220570  
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/230749  
dc.subject.keyword
vibration control  
dc.subject.keyword
inerter  
dc.subject.keyword
mathematical model  
dc.subject.keyword
symbolic analysis  
dc.datacite.resourceTypeGeneral
dataset  
dc.conicet.datoinvestigacionid
15343  
dc.conicet.justificacion
It is computer code, so geolocalization is irrelevant.  
dc.datacite.formatedDate
2022-2023