Mostrar el registro sencillo del ítem
dc.date.available
2024-05-08T10:00:33Z
dc.identifier.citation
Garrido, Carlos Hernán; Domizio, Martin Norberto; Curadelli, Raul Oscar; Ambrosini, Ricardo Daniel; (2024): Code for symbolic mathematical analysis, simulations and processing of experimental results related to Inerter-based Building Mass Damper. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/234817
dc.identifier.uri
http://hdl.handle.net/11336/234817
dc.description.abstract
The tuned mass damper (TMD) is a classical device interesting for reducing deformations between DOFs
without physically connecting them. However, it has a practical limit due to the increase in mass required for
improving its performance. A building mass damper (BMD) uses mode coupling to make the upper
substructure of a chain-like structure behave as a TMD for the lower substructure, which avoids adding
mass to the structure. Unfortunately, near-uniform chain-like structures require isolation of the upper
substructure for tuning the BMD, making it impractical for retrofitting existing structures since it is an inseries
intervention. This paper proposes and evaluates using an inerter, instead of isolating the upper
substructure, to control vibrations through mode coupling in a chain-like structure. From an analytical and
numerical study, it was found a significant reduction of lower substructure deformations by implementing
solely an inerter and a damper in the upper substructure. The inerter-based approach showed similar
performance to the classical BMD with the advantage of being an in-parallel intervention. Therefore, this
approach constitutes a practical retrofit to improve the dynamic behavior of existing structures with
excessive deformations in a lower substructure whose functionality or esthetics would be compromised if
control devices were installed in it.
The Building Mass Damper is a design concept for vibration control of structures where the upper substructure
effectively behaves as a Tuned Mass Damper (TMD) for the lower one. Unfortunately, its tuning usually requires
softening or partial isolation of the upper substructure; limiting its applicability for retrofitting. The recently
proposed Inerter-based Building Mass Damper (IBMD) is an in-parallel intervention on the upper substructure
with an inerter and a damper. Thus, the inerter allows correct Tuning, the upper substructure provides the
Mass, and the damper adds the Damping. Therefore, a very large mass-ratio TMD is obtained with marginal
additional weight and minimal practical impact. In the present work, experimental tests supported by numerical
simulations on a small two-story structure model quantitatively confirm the effectiveness of the IBMD. Besides,
an innovative compliant mechanism design is introduced for the implementation of the translation-rotational
converter that drives the inerter; which has minimal backlash and friction, still allowing large strokes. The
experiments involved a frictional damper, which performed comparable to a linear viscous damper considered
in the simulations.
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.title
Code for symbolic mathematical analysis, simulations and processing of experimental results related to Inerter-based Building Mass Damper
dc.type
dataset
dc.date.updated
2024-05-07T14:51:36Z
dc.description.fil
Fil: Garrido, Carlos Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;
dc.description.fil
Fil: Domizio, Martin Norberto. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Curadelli, Raul Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;
dc.description.fil
Fil: Ambrosini, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo;
dc.rights.embargoDate
2024-05-31
dc.datacite.PublicationYear
2024
dc.datacite.Creator
Garrido, Carlos Hernán
dc.datacite.Creator
Domizio, Martin Norberto
dc.datacite.Creator
Curadelli, Raul Oscar
dc.datacite.Creator
Ambrosini, Ricardo Daniel
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.affiliation
Area Dinamica Experimental ; Instituto de Mecanica Estructural y Riesgo Sismico ; Facultad de Ingenieria ; Universidad Nacional de Cuyo
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.subject
Mecánica Aplicada
dc.datacite.subject
Ingeniería Mecánica
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS
dc.datacite.subject
Sistemas de Automatización y Control
dc.datacite.subject
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS
dc.datacite.ContributorType
RelatedPerson
dc.datacite.ContributorType
RelatedPerson
dc.datacite.ContributorName
Moran, Jose Roberto
dc.datacite.ContributorName
Houri, Eduardo Gabriel
dc.datacite.date
01/02/2022-31/12/2023
dc.datacite.DateType
Creado
dc.datacite.language
eng
dc.datacite.version
1.0
dc.datacite.description
Python code
dc.datacite.DescriptionType
Métodos
dc.datacite.FunderName
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.FunderName
Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica
dc.datacite.FunderName
Universidad Nacional de Cuyo
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/220570
dc.relationtype.isSourceOf
https://ri.conicet.gov.ar/handle/11336/230749
dc.subject.keyword
vibration control
dc.subject.keyword
inerter
dc.subject.keyword
mathematical model
dc.subject.keyword
symbolic analysis
dc.datacite.resourceTypeGeneral
dataset
dc.conicet.datoinvestigacionid
15343
dc.conicet.justificacion
It is computer code, so geolocalization is irrelevant.
dc.datacite.formatedDate
2022-2023
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño