Mostrar el registro sencillo del ítem

dc.date.available
2024-05-15T13:04:50Z  
dc.identifier.citation
Teran, Ezequiel Jesús; Juliarena, María Paula; Gyenge, Javier Enrique; (2024): Tasa de oxidación de metano (TOM), parámetros de suelo (Capacidad de retención de agua, CRA; humedad gravimétrica del suelo, HS; materia orgánica, MO; pH; textura; clase textural) y climáticos en superficie (temperatura media; precipitación; índice de aridez) obtenidos en mallines patagónicos y forestaciones de pinus ponderosa de la localidad de San Carlos de Bariloche, Provincia de Río Negro. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/235406  
dc.identifier.uri
http://hdl.handle.net/11336/235406  
dc.description.abstract
Tasa de oxidación de metano (TOM), parámetros de suelo (Capacidad de retención de agua, CRA; humedad gravimétrica del suelo, HS; materia orgánica, MO; pH; textura; clase textural) y climáticos en superficie (temperatura media; precipitación; índice de aridez) obtenidos en forestaciones de P. Ponderosa y pastizales patagónicos de la localidad de San Carlos de bariloche, Pcia de Río negro. Los datos se tomaron en la temporada estival (Abril 2022). TOM y parámetros de suelo se determinaron a una profundidad de 00-20, 40-60 y 80-100 cm bajo la superficie del suelo desnudo.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.title
Tasa de oxidación de metano (TOM), parámetros de suelo (Capacidad de retención de agua, CRA; humedad gravimétrica del suelo, HS; materia orgánica, MO; pH; textura; clase textural) y climáticos en superficie (temperatura media; precipitación; índice de aridez) obtenidos en mallines patagónicos y forestaciones de pinus ponderosa de la localidad de San Carlos de Bariloche, Provincia de Río Negro  
dc.type
dataset  
dc.date.updated
2024-05-15T11:48:55Z  
dc.description.fil
Fil: Teran, Ezequiel Jesús. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Juliarena, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Gyenge, Javier Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina  
dc.rights.license
Datos sujetos al derecho de propiedad intelectual  
dc.datacite.PublicationYear
2024  
dc.datacite.Creator
Teran, Ezequiel Jesús  
dc.datacite.Creator
Juliarena, María Paula  
dc.datacite.Creator
Gyenge, Javier Enrique  
dc.datacite.affiliation
Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires  
dc.datacite.affiliation
Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas  
dc.datacite.affiliation
Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires  
dc.datacite.affiliation
Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas  
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible  
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas  
dc.datacite.subject
Ciencias Medioambientales  
dc.datacite.subject
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS  
dc.datacite.date
01/04/2022-04/04/2022  
dc.datacite.DateType
Recolectado  
dc.datacite.language
spa  
dc.datacite.version
1.0  
dc.datacite.description
Sitio de muestreo: En esta ecorregión, los muestreos se llevaron a cabo durante la temporada estival de 2022, en tres sitios cercanos a la ciudad de San Carlos de Bariloche (Pcia. de Río Negro) ubicados en plantaciones comerciales de campos privados. En cada uno de estos sitios (Estepa patagónica A, B y C), se muestrearon dos parcelas con coberturas vegetales diferentes: un pastizal naturalizado (Pastizal), representante de la cobertura vegetal natural de coirones (Pappostipa spp., Festuca spp.) y neneo (Mulinum spinosum), y una forestación de pino ponderosa (Pinus ponderosa, Forestación), representante de los sistemas silvícolas que se presentan en la región. El oeste de la ecorregión (donde están ubicados los sitios estudiados) presenta un relieve de montañas y colinas erosionadas, con alturas superiores a los 1000 m. Esta región muestra un fuerte gradiente de precipitación media anual, que incrementa con la altura (Jobbágy et al., 1995), por lo que estos sitios en particular, presentan valores de precipitación aproximados a los registrados al este de la ciudad de San Carlos de Bariloche (apox. 800 mm año-1; Pereyra 2007). La ecorregión se describe, desde el punto de vista climático, con una precipitación media anual inferior a los 250 mm y una temperatura media anual que fluctúa entre 14 y 10 °C (Peri y Vetter, 2022). La vegetación forma matorrales achaparrados, con arbustos bajos, una cobertura de herbáceas y suelo desnudo. En esta zona es posible encontrar mallines, que presentan suelos hidromórficos y productividad herbácea superior a las áreas de secano circundantes (Peri y Vetter, 2022). Datos climáticos Los datos de temperatura y precipitación tanto anual como mensual, se obtuvieron a partir de la base de datos WorldClim 2.1 (Fick y Hijmans, 2017). En ambos casos, la información estaba en formato de capas ráster (resolución espacial 30 seg i.e. ̴1 km en el ecuador), por lo que fue necesaria la utilización del software Qgis 3.32.0-Lima (QGIS Association, 2023) junto con el complemento para la extracción de los datos puntuales (Point sampling tool, en su idioma original). El índice de aridez mensual (IA) se obtuvo mediante el cálculo del índice de De Martonne (Ec. 1; Mercado-Mancera et al., 2010; Wang y Takahashi, 1999). IA = 12 Precip./ (Temp. + 10) Ec. 1 En donde Precip. y Temp. representan la precipitación y temperatura media mensual. Caracterización de los suelos muestreados El análisis de suelo se comenzó inmediatamente después del muestreo en campo. Se tamizó el suelo con malla de 2 o 4 mm en función de la dificultad para realizar la tarea y del tipo de suelo que se estaba procesando en cada momento y se tomaron submuestras de las mismas muestras de suelo que luego se utilizaría para la determinación de TOM. La granulometría del suelo se realizó por el método de Bouyoucos realizando una suspensión de suelo con 40 g de muestra y 100 ml de solución de Calgón (hexametafosfato de sódio) al 5%, que se agitó durante 24 hs. Pasado dicho tiempo, la suspensión se trasvasó a probetas de 1000 ml y se la llevó a volumen con agua destilada. Posteriormente, se homogeneizó la suspensión en todo el volumen mediante un agitador vertical y se determinó la densidad del fluido luego de 30 seg y 120 min desde el final de la agitación. En cada medición de densidad, se determinó también la temperatura. Para la realización de los cálculos y correcciones de la medición, se incluyeron en los ensayos probetas blanco que se encontraban compuestas por agua destilada y solución de calgón en la misma proporción que las muestras (Milione, 2019). Una vez obtenida la granulometría, se determinó la clase textural y la capacidad de retención de agua de la muestra mediante el software SPAW (Saxtony Rawls, 2006). El contenido de agua gravimétrica del suelo (HS; %) en condiciones de campo se determinó mediante el pesaje de muestras de suelo fresco y seco en estufa. Para esto, las muestras se colocaron durante 24 h a 105 °C. La humedad del suelo se expresa en tperminos relativos (porcentaje) a la capacidad de retención de agua HS = (Dr - D) 100 / D Ec. 1 El contenido de materia orgánica (MO; %) se determinó mediante el método de Schulte y Hopkins (Eyherabide et al., 2014), que consiste en la extracción de 5 gr de muestra integrada de cada estrato, previamente tamizada con malla de 500 μm que se colocará en estufa durante 24 h a 105 °C. Luego, se las deja enfriar hasta temperatura ambiente, se registra el peso y se coloca en mufla a 360 °C hasta estabilizar peso. Las muestras se enfrían en el desecador y se registra el peso final. El contenido de materia orgánica se calcula como se muestra en Ec. 2. MO = (D - C) 100 / DEc. 2 La determinación del pH se realizó de acuerdo a Burt (2004). Se pesaron 5 gr de muestra, previamente secada al aire y tamizada con malla de 2 mm, y se colocaron en un vaso de precipitados de 25 ml. Se agregaron 12,5 ml de agua descarbonatada a fin de obtener una suspensión cuya relación sea 1:2,5 (w:v; Deng et al., 2011; Burt, 2004). Luego, se agitó la mezcla unos 30 segundos y se la dejó reposar durante 40 min. Por último, se determinó el pH del líquido sobrenadante con un peachímetro de laboratorio, previamente calibrado en cada ocasión. Esta determinación, HS y MO se realizaron por triplicado para todas las muestras obtenidas en cada uno de los muestreos. Tasa de oxidación de CH4 en condiciones de laboratorio El suelo fresco de cada profundidad se homogeneizó por tamizado (2 mm) y se humedeció hasta alcanzar una humedad del 50 % de la profundidadcidad de retención de agua (CRA0; Serrano-Silva et al., 2014). Todas las profundidades se submuestrearon (100 g) y se colocaron por triplicado homogéneamente distribuidos en cámaras estáticas herméticas de 1 l con una válvula de una vía para el muestreo de la atmósfera interna de la cámara. Se incluyó un blanco para cada profundidad de suelo que consistió en una submuestra de suelo autoclavado (0,5 h a 122 °C). Las muestras se estabilizaron en oscuridad a 21 °C en contacto con el aire atmosférico durante la noche; luego, las cámaras se expusieron a condiciones ambientales por 30 minutos y se cerraron antes del inicio de la medición (Bárcena et al., 2014; Hiltbrunner et al., 2012). La TOM se estimó mediante el monitoreo del decaimiento de la concentración de CH4 en la atmósfera de cada cámara a lo largo de cinco intervalos regulares de tiempo: 0, 1, 2, 3 y 4 horas luego de la clausura de la cámara. Se empleó una interpolación exponencial de los datos. Las concentraciones de los gases se analizaron con un cromatógrafo gaseoso (Agilent 7890A; Estados Unidos de América), equipado con una columna G3591-81004 - 6Ft HayeSep Q 80/100 Ultimetal y un FID para determinar la concentración de CH4. La presión del gas transportador (N2) se mantuvo a 27 psi y el flujo de los gases de la llama (H2 y O2) se estableció en 40 y 450 ml min-1. Las temperaturas del horno y del detector FID fueron 60 °C y 300 °C, respectivamente.  
dc.datacite.DescriptionType
Métodos  
dc.datacite.FundingReference
2017-1649  
dc.datacite.FunderName
Ministerio de Ciencia, Tecnología e Innovación Productiva  
dc.subject.keyword
METANO  
dc.subject.keyword
SUELO  
dc.subject.keyword
GASES DE EFECTO INVERNADERO  
dc.subject.keyword
FORESTACIÓN  
dc.subject.keyword
PASTIZAL  
dc.subject.keyword
ESTEPA PATAGÓNICA  
dc.subject.keyword
PROVINCIA DE RÍO NEGRO  
dc.datacite.resourceTypeGeneral
dataset  
dc.conicet.datoinvestigacionid
15923  
dc.datacite.awardTitle
PICT  
dc.datacite.geolocation
P. Ponderosa A: -41,27591667, -71,17365  
dc.datacite.geolocation
P. Ponderosa B: -41,27915556, -71,17555278  
dc.datacite.geolocation
P. Ponderosa C: -41,225575, -71,225575  
dc.datacite.geolocation
Pastizal A: -41,27574722, -71,17472222  
dc.datacite.geolocation
Pastizal B: -41,27873889, -71,17664722  
dc.datacite.geolocation
Pastizal C: -41,22511389, -71,22849167  
dc.datacite.formatedDate
2022