Repositorio Institucional
Repositorio Institucional
CONICET Digital
Datos de
Investigación
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
    • TODO
  • Ayuda
    • Qué son y qué no son los Datos de Investigación
    • Cómo obtener un DOI/Handle
    • Cómo reutilizar y citar los Datos de Investigación
    • Preguntas frecuentes | FAQs
    • Contacto
  • Novedades
    • Noticias
    • Boletines
  • Acerca de
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • METADATOS
  • CONDICIONES DE USO
  • ARCHIVOS
  • ITEMS RELACIONADOS
  • ESTADISTICAS
 
 
Datos de investigación

Precision Cell Detection and Counting In Adhesion Experiments: A Deep Learning Perspective With YOLO. Annotated Dataset

Autores: Breunig, Alexis; Di Giusto, GiselaIcon ; Casal, Juan JoséIcon
Publicador: Consejo Nacional de Investigaciones Científicas y Técnicas
Fecha de depósito: 27/08/2024
Fecha de creación: 05/10/2023-05/01/2024
Clasificación temática:
Ciencias de la Información y Bioinformática; Bioquímica y Biología Molecular; Sistemas de Automatización y Control

Resumen

Cell adhesion is a fundamental biological process underpinning various physiological and pathological phenomena, including tissue repair and cancer metastasis. While straightforward, traditional assays for assessing cell adhesion suffer from poor reproducibility and low throughput. This study introduces a deep learning-based approach using the You Only Look Once (YOLO) convolutional neural networks to automate cell detection and counting, even in real-time, thereby improving the speed and efficiency of cell adhesion assays. Our methodology involved the analysis of AQP2-RCCD1 cell adhesion assays with the data captured and processed using the YOLO models. These models were trained on various image resolutions to assess the trade-offs between image quality and computational efficiency, significantly optimizing the detection process. Employing the YOLOv3, YOLOv5, YOLOv8, and YOLOv9 architectures, we address the challenges of variability in cell density and illumination within adhesion experiments. In commitment to open science principles, the source code, the trained models, and our real-time webcam analysis approach are shared to foster innovation and collaboration. Our findings highlight the potential of using YOLO models for efficient and accurate cell analysis, making advanced image processing accessible to a broader range of researchers.

Métodos

RCCD1 is an epithelial cell line (RRID: CVCL_E043) derived from rat renal cortical collecting ducts (CCD). These cells maintain the primary characteristics of the parental CCD from which they originate and show high transepithelial resistance (Blot-Chabaud et al., 1996). We employed AQP2-RCCD1 cells that constitutively express AQP2 protein at the apical membrane after RCCD1 being stably transfected with cDNA coding for rat AQP2 (Ford et al., 2005). Cells were passaged every 7 days and seeded at 8000 cells/cm2. AQP2-RCCD1 cells were kept at 37°C in a controlled atmosphere with 5% CO2 in a modified-DMEM media: 1:1 v/v DMEM/Ham's F12, 14 mM NaHCO3, 2 mM glutamine, 50 nM dexamethasone, 30 nM sodium selenite, 5 g/ml insulin, 5 g/ml transferrin, 10 ng/ml epidermal growth factor, 50 nM triiodothyronine, 100 U/ml penicillin-streptomycin, 20 mM HEPES, 2% fetal bovine serum and Geneticin (G418, 200 µg/ml, Thermo Fisher Scientific Cat# 11811023). Cell adhesion assay: AQP2-RCCD1 cells were trypsinized and resuspended in a DMEM/F12 serum-free medium. Subsequently, approximately 5×104 cells were added per well to a 24-well culture plate and allowed to adhere at 37 °C for 30 min. After incubation, non-adherent cells were removed, and each well was washed gently with cold PBS. Cells were fixed with 4% PFA and photographed in six random fields for each well using a Microsoft Lifecam VX-6000 connected to an Olympus inverted microscope IMT-2 with a 4x objective lens.

Información Técnica

YOLO annotation Darknet Format This format contains one text file per image (containing the annotations and a numeric representation of the label) and a labelmap which maps the numeric IDs to human readable strings. The annotations are normalized to lie within the range [0, 1]. Format Description: Each image has one txt file with a single line for each bounding box. The format of each row is: < object-class-ID> Example: img0001.txt 0 0.5606640625 0.5308463541666667 0.0219140625 0.026901041666666667 0 0.48796875 0.5444921875000001 0.025380859375 0.02384114583333333 0 0.357890625 0.5558593749999999 0.022822265625 0.028203125
Palabras clave: DEEP LEARNING, REAL-TIME ANALYSIS, CELL COUNTING, CELL ADHESION
Previsualización destacada
Identificador del recurso
URI: http://hdl.handle.net/11336/243143
Colecciones
Datos de Investigación(IFIBIO HOUSSAY)
Datos de Investigación de INSTITUTO DE FISIOLOGIA Y BIOFISICA BERNARDO HOUSSAY
Citación
Breunig, Alexis; Di Giusto, Gisela; Casal, Juan José; (2024): Precision Cell Detection and Counting In Adhesion Experiments: A Deep Learning Perspective With YOLO. Annotated Dataset. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/243143
Condiciones de uso
Las buenas prácticas científicas esperan que se otorgue el crédito adecuado mediante una citación. Utilice un formato de citación y aplique estas normas de reutilización.
Puede compartir (copiar, distribuir y usar); crear (generar nuevas obras basadas en los datos) y adaptar (modificar, transformar) atribuyendo cualquier uso público de los datos, o trabajos producidos a partir de los mismos, debe mostrar la licencia de los datos y mantener intactos los avisos del conjunto de datos original.
Compartir
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño
 
RCCD1_Dataset_Annotated.zip
  Más
4.655Mb
  Descarga
 
 
Descargar todo
  Descargar solo metadatos (JSON)   Descargar solo metadatos (XML)
 
Preparando la descarga
 

Ver el registro completo

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Explorar

  • Autores
  • Disciplinas
  • Comunidades
  • Todo

Ayuda

  • Qué son y qué no son los Datos de Investigación
  • Cómo obtener un DOI/Handle
  • Cómo reutilizar y citar los Datos de Investigación
  • Preguntas frecuentes | FAQs
  • Contacto

Novedades

  • Noticias
  • Boletines

Acerca de

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES